#[allow(unused_variables)]
#[allow(unused_assignments)]
#[allow(dead_code)]
// Main function
fn main () {
// Numbers //
// Immutable bindings
let x : i32 = 1 ;
// Integer/float suffixes
let y : i32 = 13 i32 ;
let f : f64 = 1.3 f64 ;
// Type inference
// Most of the time, the Rust compiler can infer what type a variable is, so
// you don’t have to write an explicit type annotation.
// Throughout this tutorial, types are explicitly annotated in many places,
// but only for demonstrative purposes. Type inference can handle this for
// you most of the time.
let implicit_x = 1 ;
let implicit_f = 1.3 ;
// Arithmetic
let sum = x + y + 13 ;
// Mutable variable
let mut mutable = 1 ;
mutable = 4 ;
mutable += 2 ;
// Strings //
// String literals
let x : & str = "hello world!" ;
// Printing
println! ( "{} {}" , f, x); // 1.3 hello world
// A `String` – a heap-allocated string
// Stored as a `Vec<u8>` and always hold a valid UTF-8 sequence,
// which is not null terminated.
let s : String = "hello world" . to_string ();
// A string slice – an immutable view into another string
// This is basically an immutable pair of pointers to a string – it doesn’t
// actually contain the contents of a string, just a pointer to
// the begin and a pointer to the end of a string buffer,
// statically allocated or contained in another object (in this case, `s`).
// The string slice is like a view `&[u8]` into `Vec<T>`.
let s_slice : & str = & s;
println! ( "{} {}" , s, s_slice); // hello world hello world
// Vectors/arrays //
// A fixed-size array
let four_ints : [ i32 ; 4 ] = [ 1 , 2 , 3 , 4 ];
// A dynamic array (vector)
let mut vector : Vec < i32 > = vec! [ 1 , 2 , 3 , 4 ];
vector . push ( 5 );
// A slice – an immutable view into a vector or array
// This is much like a string slice, but for vectors
let slice : & [ i32 ] = & vector;
// Use `{:?}` to print something debug-style
println! ( "{:?} {:?}" , vector, slice); // [1, 2, 3, 4, 5] [1, 2, 3, 4, 5]
// Tuples //
// A tuple is a fixed-size set of values of possibly different types
let x : ( i32 , & str , f64 ) = ( 1 , "hello" , 3.4 );
// Destructuring `let`
let (a, b, c) = x;
println! ( "{} {} {}" , a, b, c); // 1 hello 3.4
// Indexing
println! ( "{}" , x . 1 ); // hello
//////////////
// 2. Types //
//////////////
// Struct
struct Point {
x : i32 ,
y : i32 ,
}
let origin : Point = Point { x : 0 , y : 0 };
// A struct with unnamed fields, called a ‘tuple struct’
struct Point2 ( i32 , i32 );
let origin2 = Point2 ( 0 , 0 );
// Basic C-like enum
enum Direction {
Left ,
Right ,
Up ,
Down ,
}
let up = Direction :: Up ;
// Enum with fields
enum OptionalI32 {
AnI32 ( i32 ),
Nothing ,
}
let two : OptionalI32 = OptionalI32 :: AnI32 ( 2 );
let nothing = OptionalI32 :: Nothing ;
// Generics //
struct Foo < T > { bar : T }
// This is defined in the standard library as `Option`
enum Optional < T > {
SomeVal ( T ),
NoVal ,
}
// Methods //
impl < T > Foo < T > {
// Methods take an explicit `self` parameter
fn bar ( & self ) -> & T { // self is borrowed
& self . bar
}
fn bar_mut ( &mut self ) -> &mut T { // self is mutably borrowed
&mut self . bar
}
fn into_bar ( self ) -> T { // here self is consumed
self . bar
}
}
let a_foo = Foo { bar : 1 };
println! ( "{}" , a_foo . bar ()); // 1
// Traits (known as interfaces or typeclasses in other languages) //
trait Frobnicate < T > {
fn frobnicate ( self ) -> Option < T >;
}
impl < T > Frobnicate < T > for Foo < T > {
fn frobnicate ( self ) -> Option < T > {
Some ( self . bar)
}
}
let another_foo = Foo { bar : 1 };
println! ( "{:?}" , another_foo . frobnicate ()); // Some(1)
// Function pointer types //
fn fibonacci (n : u32 ) -> u32 {
match n {
0 => 1 ,
1 => 1 ,
_ => fibonacci (n - 1 ) + fibonacci (n - 2 ),
}
}
type FunctionPointer = fn ( u32 ) -> u32 ;
let fib : FunctionPointer = fibonacci;
println! ( "Fib: {}" , fib ( 4 )); // 5
/////////////////////////
// 3. Pattern matching //
/////////////////////////
let foo = OptionalI32 :: AnI32 ( 1 );
match foo {
OptionalI32 :: AnI32 (n) => println! ( "it’s an i32: {}" , n),
OptionalI32 :: Nothing => println! ( "it’s nothing!" ),
}
// Advanced pattern matching
struct FooBar { x : i32 , y : OptionalI32 }
let bar = FooBar { x : 15 , y : OptionalI32 :: AnI32 ( 32 ) };
match bar {
FooBar { x : 0 , y : OptionalI32 :: AnI32 ( 0 ) } =>
println! ( "The numbers are zero!" ),
FooBar { x : n, y : OptionalI32 :: AnI32 (m) } if n == m =>
println! ( "The numbers are the same" ),
FooBar { x : n, y : OptionalI32 :: AnI32 (m) } =>
println! ( "Different numbers: {} {}" , n, m),
FooBar { x : _, y : OptionalI32 :: Nothing } =>
println! ( "The second number is Nothing!" ),
}
/////////////////////
// 4. Control flow //
/////////////////////
// `for` loops/iteration
let array = [ 1 , 2 , 3 ];
for i in array {
println! ( "{}" , i);
}
// Ranges
for i in 0 u32 .. 10 {
print! ( "{} " , i);
}
println! ( "" );
// prints `0 1 2 3 4 5 6 7 8 9 `
// `if`
if 1 == 1 {
println! ( "Maths is working!" );
} else {
println! ( "Oh no..." );
}
// `if` as expression
let value = if true {
"good"
} else {
"bad"
};
// `while` loop
while 1 == 1 {
println! ( "The universe is operating normally." );
// break statement gets out of the while loop.
// It avoids useless iterations.
break
}
// Infinite loop
loop {
println! ( "Hello!" );
// break statement gets out of the loop
break
}
/////////////////////////////////
// 5. Memory safety & pointers //
/////////////////////////////////
// Owned pointer – only one thing can ‘own’ this pointer at a time
// This means that when the `Box` leaves its scope, it can be automatically deallocated safely.
let mut mine : Box < i32 > = Box :: new ( 3 );
* mine = 5 ; // dereference
// Here, `now_its_mine` takes ownership of `mine`. In other words, `mine` is moved.
let mut now_its_mine = mine;
* now_its_mine += 2 ;
println! ( "{}" , now_its_mine); // 7
// println!("{}", mine); // this would not compile because `now_its_mine` now owns the pointer
// Reference – an immutable pointer that refers to other data
// When a reference is taken to a value, we say that the value has been ‘borrowed’.
// While a value is borrowed immutably, it cannot be mutated or moved.
// A borrow is active until the last use of the borrowing variable.
let mut var = 4 ;
var = 3 ;
let ref_var : & i32 = & var;
println! ( "{}" , var); // Unlike `mine`, `var` can still be used
println! ( "{}" , * ref_var);
// var = 5; // this would not compile because `var` is borrowed
// *ref_var = 6; // this would not either, because `ref_var` is an immutable reference
ref_var; // no-op, but counts as a use and keeps the borrow active
var = 2 ; // ref_var is no longer used after the line above, so the borrow has ended
// Mutable reference
// While a value is mutably borrowed, it cannot be accessed at all.
let mut var2 = 4 ;
let ref_var2 : &mut i32 = &mut var2;
* ref_var2 += 2 ; // '*' is used to point to the mutably borrowed var2
println! ( "{}" , * ref_var2); // 6 , // var2 would not compile.
// ref_var2 is of type &mut i32, so stores a reference to an i32, not the value.
// var2 = 2; // this would not compile because `var2` is borrowed.
ref_var2; // no-op, but counts as a use and keeps the borrow active until here
}