Turing completeness
In computability theory, a system of data-manipulation rules (such as a model of computation, a computer’s instruction set, a programming language, or a cellular automaton) is said to be Turing-complete or computationally universal if it ==can be used to simulate any Turing machine== (devised by English mathematician and computer scientist Alan Turing). This means that this system is able to recognize or decide other data-manipulation rule sets. Turing completeness is used as a way to express the power of such a data-manipulation rule set. Virtually all programming languages today are Turing-complete.
A related concept is that of Turing equivalence – two computers P and Q are called equivalent if P can simulate Q and Q can simulate P. The Church–Turing thesis conjectures that any function whose values can be computed by an algorithm can be computed by a Turing machine, and therefore that if any real-world computer can simulate a Turing machine, it is Turing equivalent to a Turing machine. A universal Turing machine can be used to simulate any Turing machine and by extension the computational aspects of any possible real-world computer.
— Wikipedia